Molding & Liner 101

Choosing the Right Closure and Liner Combination for your Package

What value does the liner bring to your package?

- Leak prevention
- Ensure consumer confidence
- Tamper-evidence
- Shelf-life extension
- Safety and security
- Active ingredients remain active
- Seals in factory freshness
- Prevents product contamination
- Retains aroma/fragrance
- Prevents product pilferage

NOTES:

- 1. THE CLOSURE DIMENSIONS SHOWN ARE THOSE WHICH HAVE GENERALLY BEEN FOUND TO BE FUNCTIONAL BASED ON DADUSTRY EXPERIENCE. BECAUSE OF WARLADLITY IN PLASTIC CLOSURE MATERIALS AND CONTAINER FINISHES, HOWEVER, EACH CLOSURE/FINISH SYSTEM SHOULD BE INDIVIDUALLY EVALUATED TO ENSURE IT MEETS APPLICABLE PERFORMANCE CRITERIA. CLOSURES HAVING DIMENSIONS OUTSIDE THESE RANGES ARE ALSO APPROPRIATE FOR USE IF APPLICABLE PERFORMANCE CRITERIA ARE MET.
- 2. THE 'T' AND 'T)', 'E' AND 'E' ODMENSIONS ARE THE AVERAGE OF TWO DIAMETERS MEASURED APARDWINATELY OD' APART. THE LINETS OF OVALTY VOL SE DETERMINED BY CLOSURE SUPPLIER AND CLOSURE OUSTOMER AS NEOESSARY.
- THE 'T' AND 'E' DIHENSIONS ARE TO BE MEASURED AT THE TOP OF THE CLOSURE AT A PRACTICAL POINT NEAR THE END OF FULL THREAD.
- 4. THE 'TL' HAX. AND 'EL' MAX. DIMENSIONS ARE TO BE MEABURED MEAR THE BOTTOM OF THE CLOBURE AT THE START OF FULL THREAD. THE VALUE FOR 'TL' MAX AND 'EL' MAX. INCLUDE A DRAFT ANGLE.
- 5. NAXIOUN CLOBURE "H" DIMENSION SHALL EQUAL THE MINIDUM "H" DIMENSION OF THE BOTTLE FINISH PLUS THE COMPRESSED LINER THICKNESS. MINIDUM CLOSURE "H" DIMENSION SHALL EQUAL THE MAXIMUM CLOSURE "H" DIMENSION KINUS THE TOTAL TOLERANCE RANGE.
- B. THE CLOBURE "H" DIMENSIONS SPECIFIED ON THIS DRAWING ARE BASED ON GPT FINISH SPECIFICATIONS. FOR PLASTIC BOTTLE FUNDAMES. REVIEW SPECIFICATIONS TO DEFERMINE IF PROPER CLEARANCE IS AVAILABLE. ALL CLOBURE-FINISH SPECIFIC SHOULD BE INDIVIDUALLY EVALUATED TO INSURE THAT APPLICABLE PERFORMANCE CRITERIA ARE MET.
- IT IS IMPORTANT THAT THE LINER WELL DEPTH "A". THE SHOULDER ANGLE "B". AND THE FILLET RADIUS "C". BE ADJUSTED TO PROVIDE THE PROPER CLEARANCE VITH THE MINIMUM "S" DIMENSION OF THE BOTTLE FINISH.
- 8. THREAD CONTOUR AND OUTSIDE CLOSURE CONTOUR SHOWN ARE FOR ILLUSTRATIVE PURPOSES ONLY.
- B. FOR OPTIMUM SEALING RESULTS. A MINIMUM OF 360" THREAD ENGAGEMENT IS DESIREABLE.
- MAINTENANCE OF PROPER THREAD DEPTH REQUIRES THAT VARIATIONS IN THE "E" DIMENSION SHOULD FOLLOW THOSE OF THE "T", SUBJECT TO NORMAL MANUFACTURING CONDITIONS.

	CLOSURE FOR	T.P.I.	BEE N	OTE 3	SEE NOTE 4	SE	E ØTE 3	EL SEE NOTE 4	SEE NO	H Teg Sae
	FINISH NO.		MAX.	HIN.	HAX.	MAX.	HIN	MAX.	HKE.	HEN.
_	18-400	8	.719	.705	.726	.635	.621	.642	.377	.358
A	20~400	8	.798		.805	/2714	1700	1721 //		.350
$/(\Delta)$	22-400	8	.877	. 853	.884	.793	/.779./	.6D0//	377	.358
	24~400	Û	-985	.641	.922	3874	1367		.408	.308
	29~400	б	1.109	1.089	1.310	1.009	.985	1.016	.405	.368
	30~400	6	1.142	1.128	1.348	1.048	1.034	1.055	.406	.368
	33~400	6	1.290	1.268	1.297	1.186	1.172	1.193	.406	.368
	35-430	6	1.379	1.365	1.385	1.395	1.271	1.292	.405	.308
	38-400	6	1.40L	1.477	1.408	1.307	1.363	1.404	.405	.368
	40~400	6	1.585	1.581	1.602	1.501	1.487	1.508	.406	.368
	43-400	б	1.669	1.655	1.675	1.575	1.564	1.582	.406	.368
	45~400	Б	1.755	1.743	1.752	1.661	1.647	1.668	,405	.368
	48-430	6	1.885	1.871	1.892	1.791	1.777	1.798	.406	.368
	51~400	6	1.98	1.060	1.000	1.889	1,875	1.896	.406	.368
A.	53~400	6	2.082	2.068	2.089	///.988	1.574	1.995	.405	.368
$/\Delta$	58-430	6	2.236	2.225	2.245	2.145	2/131/	2.152	406	.368
	60~400	6	2.357	2.343	2.364	2:260	2.249	2.270	406	.308
	63-400	6	2.476	2.462	2.483	2.392	2.368	2.399	.405	.368
	66-400	6	2.594	2.560	2,601	2.500	2.486	2.507	.406	.368
	70-430	6	2.751	2.737	2.758	2.657	2.643	2.664	.405	.368
	75~400	6	2.528	2.914	2.085	2.834	2.620	2.841	.405	.368
	77~400	6	3.050	3.036	3.058	2.998	2.502	2.964	,485	.467
	83-400	5	3.295	3.269	3.293	3.165	3.149	3.173	.485	.467
	80~400	5	3.528	3.512	3.537	3.408	3.302	3.417	.539	.515
	100-400	5	3.956	3.50B	3.968	3.896	3.818	3.846	.585	.577
	110-400	5	4.350	4.302	4.360	4.230	4.212	4.240	.596	.577
-	120-400	5	4.345	4.725	4.755	4.625	4,605	4.636	.663	.665
A						C	N			

CLOSURES CLOSURES CLOSURES FOR POH-SOLO FINISHES *EXCEPT AS NOTED FOR PON-SOLO FINISHES FOR POH-SOLO FINISHES +EXCEPT AS NOTED 25 - CORNER ~ 25 DATE N Con Max COLUMN. IS NO. H NIN IF MIN IS MIN IN MIN +EKCEPT AS NUTED HMM DESCRIPTION 10.0 DESCRIPTION DESCRIPTION 0.10-L00 0.389 0.349 0.895 SAF-LOK 24 0.450 1.072 0.940 0.442 2 0.378 0.376 0.90 1,086 0.369 0.349 0.973 28 0.500 1.152 0.378 1.088 0.442 0.378 0.963 1.166 #414 FINISH ZZ 0.501 0.461 0.973 1.152 御田 33 0.500 0.378 1.265 .436 0.407 .059 1:243 24 0.418 0.378 1.233 1.052 38 0.500 0.378 .478 Ā 0,436 0,41 198 1.378 #414 FINISH 24 0.532 1,233 0.492 .052 45 *410 FINISH 5.500 5.378 740 0.581 0.560 1.374 128 DQ4 × 0.418 0.378 # 486, FIN(SH 281 .200 SAF-CAP 0.381 1.374 20 T 0.356 M60 0.554 196 W. ഗ +480 FINISH 28 0.565 0.605 .200 1.394 0.356 0.915 33 0.430 0.411 .363 1.552 IN 33 0.418 0.378 1.377 .589 24 0.585 0.410 .090 38 0.427 0:41 .620 297 0.418 0.378 .574 781 0.575 0.425 1.175 45 0.648 0.411 .848 2.075 L/R FINISH 38 0.495 0.378 .574 .781 33 0.575 0.425 .365 38 0.520 0.397 ORE 1.550 1.730 AROUS-LOC 24 0.495 0.378 .052 .240 0.425 0.575 1.575 20 0.490 0.370 0.835 .040 0.405 0.378 1.200 .369 45 0.610 0.425 .800 0.490 0.995 0.370 1.110 0.495 0.378 1.557 1.977 ARCON 53 0,610 0.435 24 0.550 0.400 150 .020 1.240 OWENS 0.495 0.378 1.574 ...765 28 0.540 0.425 SAF-CAP 11 28 0.550 0.405 160 ¥ 395 Ъ 45 0.495 0.378 2.033 38 .843 0.540 0.425 1,510 33 0.550 0.405 1.330 .565 -0.495 0.378 7.3899 2.161 SNF-CAP 111 24 0,415 0.340 .000 38 0.550 0.385 .545 1.780 LE TRA-LOC 0.495 0.378 1.376 28 1.200 28 0,475 0.340 330 45 0.570 0.405 1.820 2.060 m 53 0.560 0,410 33 0.495 0.378 1.377 1.554 25 0,475 0.340 .340 2,160 2.405 0,495 0.376 1.574 1,756 A 38 0.475 0.940 548 45 0.495 0.378 .543 2.083 45 0.475 180 28 0.495 0.378 .369 DEM-LOC .200 SAE-GAR JIII-A 0.550 0.366 0,890 33 0.495 0.378 1.377 1.557 0.57 IT NIN 24 0.425 1.010 C HE NEW AT GET 38 0,495 0.378 1.765 1.574 10.570 28 0.425 1.165 09-1 20 0.531 .040 0.510 0.425 .340 *415 FINISH 20 0.682 1.043 0.876 0.870 0.425 .540 *SD-350 FINISH 22 0.547 RHED / INCO PINE 0.968 1.113 45.1 0.570 0.425 1.795 0.531 53 0.610 22 0.965 1.112 0.435 150 *SD-350 FINISH 24 0.577 1,946 1.195 IT KIN .. KININCH DIMENSION FROM TOP OF FINISH TO H; KIN = KINIKAN DINENGION FROM TOP OF FINISH TO - OZ HAX 0.531 HEAD AT INTERSECTION OF OUT IN ACCORDANCE WITH STANDARD ICH-SOLD FINISH SPECIFICATIONS, OR / 24 .047 1.194 BROALDER AT INTERSECTION OF OT FOR FALLY CONTAINER +415 FINISH 24 0.933 101 OFFRESSED OUTER CLOSURE CLEAKINGS 1.249 OTHERWISE NOTED. GLAMETER MIN 28 0.531 1.345 . 194 CONTAINER DIAVETER HIN - HINIHUM DIMENSION TO BE NAX + NAXIMUM BEAD DIAMETER FOR FULLY DEPRESSED +415 FINISH 28 1.053 1.388 1232 PREVENT OR CLOSURE DARRHANC. DITTER CLOSURE CLEARANCE. KERR * 480 FINISH 28 0.661 1.348 1.205 DENERAL TOLERANCES UNLESS OTHERWISE SPECIFIED: .XX # .01, .XXX # .005, X* # 2*, X*X* # 15 NOTE: 1. THE INTENTION OF THE PON-5000 35 0.581 .378 1.528 **GRAWING IS TO FACILITATE 2-PIECE** 8.55 1.741 1.580 had service, classe and OHILD RESISTANT CLOSHE 45% 0.531 1.841 1.999 23-345 WY 0,0709 FRM FUNCTIONALITY ON PON-SOLD STINEARD THIS VELIGIANT INTER REPORTELITY TO HAR THE FIRE, OFTENING HE HE LINK 1.05.100 140 28 0.560 1.345 FINISES. 09-11 ETURNATION METRO AN INSTITUTA AND CLIMPTA AND CLIMPTAR TO IN EXAMPLE. THE DANNE DRAINS APPOINTING THEN AND DR IN AND THE ALL FOR THE T 2. DIMENSIONS CALDULATED ASSUMINE 20 03-460 1.026 CR-[]] 0.864 0.000" LINER THICKNESS. NAME AND ADDRESS ADDRESS OF MILLION AT MILLION CO. (NO.) 24 0,480 1.024 1.194 IF IS GREATER THAN OR ERLA. COPYRIGHT COMA 2005 TO HE MIN THEN GRE MAX DIRES 28 0.\$35 1.181 1.340 PRINTED AND DISTRIBUTED AS A VALUETARY STANDARD BY HET APPLY. 0.536 1.523 1.350 CLOSURE MANUFACTURERS ASSOCIATION **VILLIAM KAPOLAS** PON-5009 SPECIFICATIONS ARE 1.747 0,555 1.576 DESIDNES FOR FULLY DEPRESSED PLASTIC CONTAINER HANUFACTURERS CONNITTEE Children of OUTER OLOSURE. ALL OTHER DIMENSIONS MUST COMPLY WITH 45 0.535 1.832 1.999 PRIME FOR A.B. COTTON C.H.A. DWG. NO FINISH SIZES 20-53 53 0.535 2.161 2,360 TANEARD PON-SOLD FIRESH 3/22/05 PCM-5009-SPECIFICATIONS. PLASTIC FINISH FOR CHILD-RESISTANT CLOSURES

For Reference

INSTANCE OIA. INCH

ት ጉጉ ዘ

12 40'

2.57

.791 12' 31'

875 12 21

.2111 42' 78111

4.131 10 47

DIVISION S.P.I.

۴C

.375

.375

500

.500 .500

.500

500

500

.500

500

.500 .500

.500 .500 .500 |

.500 |

5

ô

b

6

For Reference

	OTTER DIA.							O FIN	H2I Intto	25	
		ММ	Ţ	6/	Ē		<u>1143</u>	/	5] <u>105</u> /
	18	[]]	MAX.	MIN:	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MIN.
		18	.740	.688	.620	.604	.365	356	.052	.022	.325
		20	.783	.767	.699	<u>.</u> 683	365	.356	.052	.022	.404
		22	.862	.846	.778	.762	.365	<u>.356 </u>	.052	.022	.483
	Γ \backslash_3	24	.940	.924	.856	<u>.840 </u>	415	<u>.385 </u>	.061	160.	.516
\uparrow	DEADLESS FINIS	28	1.068	1.068	.594	<u>.9/4</u>	.415	<u> 685 </u>	.061	.03	.614
BEAD FINISH	(INDERENT OPTIDUEL)	10	1.12/	<u>1.IU/</u>	1.033		418	<u>. 1881 </u>	100.	160.	.033
.020 R Int Int		22	1.200	1:241	1.1/1	1.14/	.418	. 388 300.	.001	.03	.791
() () () () () () () () () () () () () (.030 R.	- 13	1.104	1.340	1.2/0	1,240	.410	<u>- 00C </u> 200	.001 061		107
		30	1 500	1.4JZ	1,302		,410 . 110	<u>, 200 (</u> 200	100.	100	1 001
	TYZX5HK	40	11.000	1.000	1.400	1,4 <u>501</u> 1 C01	110 110	<u>, 100 </u> 1 885	061	1.051	1 165
		45	1 740	1 710	1.646	1.5501	A13	- <u>199</u>	061	03	1.75
		48	1 870	1.840	1.776	1.745	413	788	.061	.031	1.381
.020 R.	IN STME	51	11.958	1.933	1.874	1.8391	.423	.393	.061	.031	1.479
	A SHE	53	2.067	2.032	1.9/3	1.9381	.423	. 393	.061	.031	1.578
(PLATIFIC REPAIL (AP)	MUIFIEU BOINESS INI (PLISTIC CARS)	58	2.224	2.189	2.130	2.095	.423	. 393	.061	160.	1.735
DERVIN 0 1 b		60	2.342	2.307	2.248	2.213	.423	. 393	.061	160.	1.853
5 .120 .060	5 1.120 .050 1.049	63	2.461	2.426	2.367	2.332	.4231	. 393	.061	.031	1.972
5 .094 .047	6 .094 .047 .039	66	2.579	2.544	2.485	2.450	.423	. 393	.061	.031	2.090
§ .084 .042	8 .084 .042 .035	70	2.736	2.701	2.642	2.60/	.423	<u>. 393 </u>	.061	160.	2.247
THREAD CROSS SECTI	240	. 75	2.93	2.819	2.819	2,784	421	.393	.061	160	2.424
Example Thread Noneach "I" Style: 12802400 or "M" Style	oture fer NZREPAND	11	1.05	1.000	2.941	2.900	.512	.4/2	.0/5	.045	12.54b
NIE:	TE FREDE TO	83	13.208	1.233	<u>1.148</u>	<u>1.113</u>	.521	4/2	.0/5	.045	2./55
 A number of and not with of thread shall be maintained. Binension H is necessred from the top of the finish to the initial shall be finish to the initial shall be been shall be be been shall be been shall be been shall be been shall be been s	point where digaster I.	89	13.511	<u>3.4/b</u>	1.191	1.10	531	.520	.0/5	.045	12.918
extended parallel to the centerline, intersacts the bood of	r skoulder.		11.93/	3.902	3.817	5.102	.012	.582	.0/5	045	<u>13.344</u>
 Contour of Deso, undercut or shoulder is optionel. Unless otherwise specified. I min. confires to the full len 	oth of the menion.	110	4.55	4.290	4.211	4.1/01	0½ . 760	-302 I	075	043	<u>וכו ג</u> ו
S. Concentricity of I nin. with respect to diameters I and E	is not included -	120	4,124	4.009	4.004 1	4.3021	161	.0/0	.0/3	Liu, li	14,131
 I and E sinemations are the average of two neasurements take Be lights of available will be determined by the container. 	en 90 apart					24 P	TTE	- TTD	1F	NTVT	ANT?
astane, as necessary.	and have concerned in the second s				'	CH3	177 1	JUII			UIU
7. All directions are in inches unless othervise indicated.							TE	CHNI	CAL	COMMI	TTEE
* To the best of our knowledge the information contained herein	n is accurate.		_		558 The soc IG. No.1	iety of t	te Plastic	Industry,	loc.		

DRAVING NUMER SP-100

Packaging with purpose.

5

Types of Liners: Non-induction

Function:

•Sealing, shelf life and reseal

Foam:

Co-extruded multi layer PE, PP and resin blends
Co-extruded and single extrusion PE and PP with facing and/or foil laminations

Facings:

Backings: pulp or foam
Facings: PE, Saran[™], PET, foil laminations with multi-layer substrates

Types of Liners: Non-induction "Tac Seals" & Glue Applied Liner

Pressure Sensitive Foam:

- Polystyrene foam, encapsulated adhesive: activated by torque
- Vitamins and nutritional supplements
- Does not comply with FDA Tamper Evident Regulations

Types of Liners: Induction FoilSeal™

	Closure
	Backing Foil Barrier
\rightarrow	Heat Seal
2	Container

One Piece Foil Seal

Two Piece Foil Seal

Two Piece Foil Seal (Improved Reseal Barrier)

Types of Liners: Induction Tabbed Versions

Lift N Peel

One Piece Foil Seal

Two Piece Foil Seal

Types of Liners: FoilSeal™ Bonding Layers

Two Piece Liners

- Temporary Bond
- Paraffin Wax softens @ 1250 F absorbs into pulp at 1500 F

One Piece Liners

- Laminated (standard)
- Water or solvent based
- Extruded resin (more robust bond)

Laminations: Why do liners cost so much?

- Pass 1 =
 Foil
 + Adhesive/Bonding
 + PET
- Pass 2 = Pass + HS
- Pass 3 = Pass 1 + 2 + 3
- Pass 4 = Slit into rolls

S105 FS1-15

How does liner cost affect the total cost?

- In and 53mm cap and above the liner cost is typically more than the closure
- Double lined closures could both increase cost or reduce cost
- Removing layers in the structure will reduce cost
- Changing the backing material will affect cost

Removal Characteristics

Remove entire liner in one piece with minimal / no residue

Tamper-Evident

FDA's definition: Visible indicator that tampering has occurred

Welded Seal

Removal Characteristics Lift 'n' Peel™ H

Paper Layer Exposed

Easy Entry Puncture

Venting Solutions

- Paper down heat seals, will provide out gassing and in gassing through the paper membrane
- They are to be
 used on dry products only

Selig

GTR Oxygen:

FDA Status:	21 CFR 177.1210	Recommended Storage and Handling:				
	TALED	SEALED	Composit	tion does not include adhesive, resin or wax bonding layers (if an		
	ESHNESS					
	Skata					
	Heat Seal	.002"	.0508mm			
	PET	.0005*	.0127mm	Heat Seal		
	Foil	.001"	.0254mm	PET		
	Paper	.006°	.1524mm	Foll		
	Wax		-	Wax		
	Facing	.003"	.0762mm	t		
	Backing	.030"	.762 mm	Eacking		
Composition	Material	Standard	Metric	8		
00000	products.	I removal from P	E and PP containers	with added barrier layer for sealing agressive		
Scope	Two piece pulp back	ed reseal base	iner heat induction f	oil innerseal that provides an aggressive		
Product	.030" Pulp FSLE 1-1	5				

Print Location (if any): Foil Layer and/or Heat Seal Layer

Essentially Zero

Selig materials are compliant with current USFDA Food allergen Guidelines.

Selig materials are compliant with California Proposition 65 labeling requirements.

Selig materials are compliant with limitation of heavy metals in packaging per CONEG & EU 94/62/EC, article 11.

MVTR:

MSDS's are not required as Selig is not a chemical manufacturer or distributor and our products are 'articles' intended for food packaging per 29 CFR 1910.1200 (HazCom).

The information contained within this product data bulletin is to be used as a general guide in determining which structures are offered for sealing to specific container materials. All of the information which we provide is reliable to the best of our knowledge, but the accuracy thereof is not guaranteed. We suggest that consumers determine suitability for their own application.

Essentially Zero

www.seligsealing.com

USA Manufacturing	North American Sales	European Sales and UK Manufacturing	Canada Manufacturing	Switzerland Manufacturing
342 E Wabash Ave.	184 Shuman Blvd.,	635-637 Ajax Avenue	145 Edward Street	Bahnhofstrasse 13
Forrest, IL 61741, USA	Suite 310	Slough Trading Estate	Aurora, Ontario Canada, L4G 1W3	8172 Niederglatt
Phone: +1 (815) 785-2100	Naperville, IL 60563, USA	Slough Berkshire SL1 4BH UK	Phone: +1 (905) 727-0114	Phone: +41 (0) 44 851 50 50
Fax: +1 (815) 657-7584	Phone: +1 (630) 922-3158	Phone: +44 (0) 1753 773 000	Fax: +1 (905) 727-8544	Fax: +41 (0) 44 851 50 51
	Fax: +1 (630) 922-8469	Fax: +44 (0) 1753 773 111		

Packaging with purpose.

Spec Review

5	e	ľ	C
2	iner	S	

Safe-Gard[™] Type A **Technical Data Sheet** .020" Pulp SG-75M Revision: SG75M-03142016

MRP DESCRIPTION - (075)SG75M.020 W SFYP

Product	.020* Pulp SG-75M						
Scope	Two piece white- containers.	lined pulp backed he	at induction foil in	nerseal that will provide a tamper evident seal to F			
Composition	Material	Standard	Metric	R			
	Pulp	0.020"	0.508mm	Pulp			
	Wax	-		Wax			
	Foil	0.001"	0.025mm	L SEAL ^{SEAR}			
	PET Film	0.0005"	0.013mm	PET Film			
	Heat Seal	0.0015"	0.038mm	Heat Seal			
	SE. ESTINESS CALED	FRESHVESS SEALED	aled Freshv Sealet				
FDA Status: 21 CFI	R 177.1210	Recommen	ded Storage and	Handling: Refer to website			
Drug Master File (D	MF): 3782	EU / EP Reg	EU / EP Reg.:				

MVTR: Essentially Zero Sealing to glass containers: Selig can not guarantee the performance or seal integrity of this materials when applied to any glass (treated or untreated) container. We suggest you contact your glass supplier for recommendations on glass treatments that may or may not improve performance or seal integrity.

Print Location (if any): On foil layer

GTR Oxygen: Essentially Zero

Selig materials are compliant with limitation of heavy metals in packaging per CONEG & EU 94/62/EC, article 11.

MSDS's are not required as Solig is not a chemical manufacturer or distributor and our products are 'articles'

intended for food packaging per 29 CFR 1910.1200 (HazCom).

The information contained within this product data bulletin is to be used as a general guide in determining which structures are offered for sealing to specific container materials. All of the information which we provide is reliable to the best of our knowledge, but the accuracy thereof is not guaranteed. We suggest that consumers determine suitability for their own application.

www.seligsealing.com

USA Manufacturing	North American Sales	European Sales and UK Manufacturing	Canada Manufacturing	Switzerland Manufacturing
342 E Wabash Ave.	184 Shuman Blvd., Suite 310	635-637 Ajax Avenue	145 Edward Street	Bahnhofstrasse 13
Forrest, IL 61741, USA	Naperville, IL 60563, USA	Slough Trading Estate	Aurora, Ontario Canada, L4G 1W3	8172 Niederglatt
Phone: +1 (815) 785-2100	Phone: +1 (630) 922-3158	Slough Berkshire SL1 4BH UK	Phone: +1 (905) 727-0114	Phone: +41 (0) 44 851 50 50
Fax: +1 (815) 657-7584	Fax: +1 (630) 922-8469	Phone: +44 (0) 1753 773 000	Fax: +1 (905) 727-8544	Fax: +41 (0) 44 851 50 51
		Fax: +44 (0) 1753 773 111		

All Selig manufacturing facilities are ISO 9001 certified. For details, visit www.seligsealing.com/certifications

TRI SEAL PRODUCT DATA SHEET **TEKNIPLEX**

MRP Description - (130)HS130.020 B SFYP

Typical Product Attributes

Construction					
Structure HS 130 ←→ Wax / Pulp Board Minimum Width Width Tolerance	76.2µm	0.003" ←→ 0.0005" / 0.020" 1.0 inch ± 1/16 inch			
Properties					
Water Vapor Transmission (WVTR) Gas (O ₂ , CO ₂ , & Others) Transmission (GTR)	ter Vapor Transmission (W/TR) Essentially Zero s (Oz, COz, & Others) Transmission (GTR) Essentially Zero				
Regulatory Compliance					
FDA Compliance	21 CFR 177.1520 (Olefin Polymers) 21 CFR 177.1520 (Doylethylene Phthalate Polymers) 21 CFR 177.1210 (Dosures with Sealing Gaskets for Food Containers) 21 CFR 175.300 (Resincus and Polymeric Coatings) 21 CFR 175.13710 (Peterdeum way) 21 CFR 175.125 (Pressure - sensitive adhesives) 21 CFR 175.125 (Pressure - sensitive adhesives)				
Drug Master File (DMF)	1378				
Other Compliances	USFDA Food Allergen Guidelines; California Proposition 65 labeling requirements; Limitations of heavy metals in packaging per CONEG & EU 94/62/EC, article 11				

Criginal Date: 04/15/201 Revised Data: 01/12/201 Revision Number: 1 Revised by SR

DISCLAIMER: This information is believed to be accurate at the time of printing and is subject to change without notice. Providing this information does not convey any larges under any patent rights or other intelectual property rights of TRI-SEAL VIEWS (TRI-SEAL AVARES NO MARRAINTY, EXPRESS OR MIPALED, WITH RESPECT TO THIS INFORMATION AND DISCLAIMS ALL LIABLITY FROM FRANKER ON TIL TRI-SEAL SHARES NO MARRAINTIES, EXPRESS ON the written warranties as may be agreed to pTRI-SEAL and its conterns. TRI-SEAL SPECIFICALLY DISCLAIMS ALL OTHER WARRAINTIES, EXPRESS ON HIPALED, WITH RESPECT TO THE ROOUCT, INCLUDING, BUT NOT LIMITED TO, WARRAINTIES OF HERCHAITABUT AND FITHERS FOR PARTICULAR PURPOSE.

When is a liner equivalent?

Title: (A01)MRPLN04.020 FOAM R SFYP

Description of Product: Universal Heat Seal Foam Liner

Detailed Product Description: This product is a one piece universal heat seal consisting of foam backing, paper, aluminum foil and heat seal laver

Regulatory Compliance: 21 CFR 177, 1210 Closures with sealing gaskets for food containers.

Typical Properties: This specification, designated by Mold-Rite Plastics, includes all liners that meet the typical value data listed below

Typical Properties	Typical Value 0.024 inch +/- 10%			
Overall Thickness				
 Polystyrene Foam 	 .0200 inch 			
 Paper 	 .0025 inch 			
 Aluminum Foil 	 .0003 inch 			
 Heat Seal Coating 	 .0015 inch 			
Drug Master File	16574			
Printed	"SEALED FOR YOUR PROTECTION"			
Print Color	Red			
Oxygen Transmission	Essentially Zero			
Water Vapor Transmission	Essentially Zero			

Disclaimers:

 These are typical properties.
 All data values and regulatory requirements were obtained from manufacturer product data sheets (where applicable).

3. Product data sheets data are intended as a general guide only and do not necessarily represent results

House class means data are internet as a general golder only and do not necessarily represent residual that may be obtained elsewhere.
 Use of Mold-Rite Plastics products must be guided by users' methods for selection of proper formulation.

Mold-Rite Plastics disclaims any responsibility for misuse or misapplication of its products.
 Mold-Rite Plastics lability and customer's exclusive remedy for any claims arising out of sales of its products are expressly limited at: customer potion for replacement not to exceed the purchase price plus

transportation charges thereon. Rev. 071818

Freshness and Protection for Today's Packaging

MRP Description

(58F)FS5-8.020 R SFYP FOAM

FoilSeal [™]
Data Sheet
.020" PS Foam FS5-8

Revision: FS58-01182014

Product	.020" PS Foam FS	35-8		
Scope	One piece foam b polyethylene, poly for liquid products	acked heat inducti styrene, PET, PVC and is an alternat	on foil inner s C, polypropyle ive to FS 5-4.	eal which will provide a tamper-evident bond to ane and treated glass containers. It is recommended
Composition	Material	Standard	Metric	g
	Backing	.020*	.508 mm	SEAL SEAL +1
	Paper	.002*	.0508mm	Eatking
	Foil	.0003*	.0076mm	Figure State
	Heat Seal	.0015*	.0381mm	Heet Sea
	F RES SEA SEA			Composition rices not include advestee, resin or reac bording layers (if any
FDA Status:	21 CFR 177.1210	Recommend	led Storage a	and Handling:
Drug Master File (D	OFM): #4544	Canadian DM	(F:	EU / EP Reg.:
GTR Oxygen: E	ssentially Zero MVTR:	Essentially Zero	Print Lo	catoin (if any): Heat Seal Laver and/or Backing

Sealing to glass containers: Selig can not guarantee the performance or seal integrity of this materials when applied to any glass (treated or untreated) container. We suggest you contact your glass supplier for recommendations on glass treatments that may or may not improve performance or seal integrity.

Selig materials are compliant with current USFDA Food allergen Guidelines. Selig materials are compliant with California Proposition 65 labeling requirements. Selig materials are compliant with limitation of heavy metals in packaging per CONEO & EU 94/62/EC, article 11.

MSDS's are not required as Selig is not a chamical manufacturer or distributor and our products are 'articles' intended tor food packaging per 29 CFR 1910 1200 (HazCom).

The information contained within this product data bulletin is to be used as a gen materials. All of the information which we provide is reliable to the best of our ion determine suitability for their own application. d as a general guide in dete mining which structures are offered for sealing to specific container riedge, but the accuracy thereof is not guaranteed. We suggest that consume

Manufacturing & Customer Service 342 E. Wabash St. Forrest, IL 61741, USA Phone: +1 (815) 657-8 Fax: +1 (815) 657-758

PRODUCT DATA SHEET HS035 N/20 LD Foam

MRP Description - (21N)HS035N/20LD.020 FOAM R SFYP PRODUCT DESCRIPTION

The makerial should be stored in well-ventilated area (term, 60° - 80°F; RH - 40% - 60%), Matomia and inod temporatimes and and be a consist of USF. Chiling, blocking, splitting or foil separation may result. If material becomes onlikel, it should be stored under the recommended conditions until stabilized. Avoid storing closure item materials our GO Say. Metal to its prone to closure item materials our GO Say. Metal to its prone to closure item materials our GO Say. Metal to its prone to closure item materials our GO Say. Metal to its prone to closure item materials our GO Say. Metal to its prone to closure item materials our GO Say. Metal to its prone to closure item materials our GO Say. Metal to its prone to closure item materials our GO Say. Metal to its prone to closure item materials our GO Say. Metal to its prone to closure item materials our GO Say. Metal to its prone to closure item materials our GO Say. Metal to its prone to closure item materials our GO Say. Metal to its prone to closure item materials our GO Say. Metal to its prone to closure item materials our GO Say. Metal to its prone to closure item materials our GO Say. Metal to its prone to closure item materials our GO Say. Metal to its prone to closure item materials our GO Say. Metal to its prone to closure item materials our GO Say. Metal to its prone to closure item materials our GO Say. Metal to item the say of the closure item materials our GO Say. Metal to item the closure item materials our GO Say. Metal to item the closure item the say of the closure item the Description: A paper-backed aluminum foil coated 1: A paper-backed aluminum foll coated with a clear heat sealable coating blend of high molecular weight ethylene and vinyl acetate copolymers on the foil, laminated to low dense polystyrene foam FDA Status: Complies with Federal Regulations of H.E.W., FDA, Sections 175 105, 175 300, 176 170, 176 180, 177 1350, 177 1840, 178 3010, 178 3710, and 182 1. corrosion

Material is a heat sealable tamper indicating innerseal which can be used for over-the-counter drug products on Polyethylene, Glass, PET, PVC, Polystyrene and Polypropylene.

Dry Products Product applications listed above are a partial listing and do not cover all suitable applications. These are

recommendations for general categories and user must test for suitability for his specific product. Not suitable for products containing oil.

The technical information and suggestions for use made herein are based on SARCAP research and experience and are believed to be noishle, but such information and suggestions do not constitute a warratety, and no patent iselinity can be assumed. Since SARCAP has no control over the control on underwinish the product is transported, ideos, handleu, used or applied, buyer must distrimine for hitsed, by preliminary tests or observed, the satisfield for the product of his purpose. All products are herewise, the satisfield of the product of his purpose. All products are producted for the purpose of the product of his purpose. otherwise, the saturbulky of the product for he purposes. At products an sold subject to SANCAP-8 written warranty, which is in lieu of all othe warranties or merchantability and threas for a particular purpose SANCAP-S liability on any basis is limited to the price of the produc

Water Vapor Transmission a) gm/cin⁴ /24 hrs/100°F/90% RH

5. Gas Transmission: cc/cin2/24hrs/1atm

1. Color

2. Thickness, mils

(a) Overall (b) Heat Seal

(c) Aluminum (d) Paper (NK) (e) Polystyrene Foam

(a) Overall (b) Heat Seal

(c) Aluminum (d) Paper (NK) (e) Polystyrene Foam

(e) Polysignetic Foarm
 4. Heat Seal Coating

 (a) Melting Point EF
 (b) Blocking Point EF

(a) Oxygen

(Sor

IMMA SATE

3. Basis Wt. Lbs/Ream 3000 ft²

PHYSICAL AND CHEMICAL PROPERTIES

file:HS035 NK/20 LDF 16125 Armour St. N.E. + Alliance, Ohio 44601 • 330-821-1166 Fax: 330-821-0364 • Toll Free: 800-966-7262 www.sancapliner.com

Aluminum

21.51 - 27.38 1.50 - 3.0 0.31 - 0.38 1.70 - 2.00 18.00 - 22.00

102.15 - 151.80

20.7 - 41.9 13.3 - 16.2 28.50 - 31.50 39.65 - 62.20

150 - 160 130 - 135

near zero

near zero

SUGGESTED PRODUCT USES

The Information is believed to be accurate at the line of printing and is subject to charge without action. Providing the information does not due any pointer injustic or insultated and pointly right of the due is a due to the SEAL MARES NO AMERIANT, SERVESS ON INFLEX, WITH NO MANTON AND SISCLAWS ALL LUBBITTY FROM RELIANCE ON IT. IT sharts only warrantees for this product are those within warrantees as real and its outservers. The SEAL SEATOPTICALLY DESCURSAL CONTENT WARRANT, SEATOPTICAL OF THE TO THE IMP

HS 035 HEAT SEAL/20F

MRP Description - (021)HS035.020 R SFYP boot to Phylateria backed, induction heat seal with on which was a comlever that gives a temper evide

bond to Polyethylene (PE), Polypropylene (PP). Polyester (PET), Polystyrene (PS), Vinyi (PVC) and glass containers. Available with standard or custom print.

ORP solutions

Selig GUIDE TO SUCCESSFUL SEALING

INDUCTION SEALING

What is Induction Sealing and how does it work?

Induction Sealing, otherwise known as cap sealing, is a non contact method of hermetically sealing a highly technical engineered laminated structure to the top of plastic and glass containers. The sealing process takes place after the container has been filled and capped. Induction sealing provides tamper evidence, leak prevention, freshness preservation, pilferage protection and enhances the brand of the sealed product. This advanced technical manual will help you understand what the induction process is and what happens when an induction liner is sealed to the land area of the container. By understanding how to address and control induction sealing variables, you can achieve a perfect seal every time.

The process of developing a perfect seal depends upon several key operating factors to ensure that the maximum performance (operating window) is achieved. These factors include matching the closure to the container's neck profile to maintain PRESSURE; setting up the induction sealer to the correct performance HEAT levels; a correctly specified induction process places no limitation on your filling line speed TIME.

The Induction Process Stages
1. Filling
2. Capping with correct on-torque (pressure)
3. Product transported on conveyor (time)
4.
5. Induction period (heat)

- 6. Cooling
- 7. Sealed Container

www.seligsealing.com

HEAT SINK

The container acts as a heat sink. This means that when you induction seal the liner with sufficient pressure to the land area, the container ABSORBS heat from the induction seal liner.

Insufficient liner pressure and/or uneven pressure on the land area will result in poor seals. If the liner is not held evenly around the entire circumference of the container, the area that is not firmly in contact will overheat. Due to the overheating of the liner, the land area could suffer excessive meltdown, which in turn causes more uneven pressure. For example, if the induction seal liner, by itself, has been passed through the induction coil, it could reach a temperature of 600°F/ 315°C or more thus causing the liner to melt or possibly burn. This heat sink phenomenon is also influenced by the fill level and fill temperature. Normally a higher power setting is required for a cold fill than a hot fill. The same is true if the container is full rather than empty. If you have overhang of the liner or tabs are folded down the side of the container, this may cause problems with induction sealing. The induction field does not react to aluminum foil that is in a vertical position when passing under the induction head. In some cases with the tabs folded down, the induction field gets deflected so the liner in that area sees less heat. Round corners on the tab tend to deflect the induction field less than square corners on tabs.

If you have a large portion of the liner folded over the edge of the container, this can have a cooling effect on the part of the liner that is on the land area and may produce weak seals or leakers.

There are many factors to take into account and the following chapters will help you to address them.

Figure 4f: Heating of the container during the induction process

How does the energy flow during induction?

Making the Right Liner Choice: Closure Size

- 18mm-28mm
- 30mm-43mm
- 45mm-58mm
- 63mm-75mm (one piece heat seals unless 100% tested)
- 77mm-89mm (one piece heat seals unless 100% tested)
- 100mm-120mm (one piece heat seals unless 100% tested)

Making the Right Liner Choice: Container Material Type

- PE
- PP
- PET
- CPET

- PVC
- PS
- Barex
- Glass
- PLA

Chemical Compatibility

Plastic Resi	n Codes	°C (Max)	°C (IMin)	lavable	wavable	eat		а	ectants
Abbreviation	Chemical Designation	Temp	Temp	Autoc	Micro	Dry He	Gas	Gamn	Disinf
ABS	Acryl-Butadienestyrene	100	-40	NO	YES	NO	YES	YES	YES
	Acetal (Delrin [®] , Celcon [®])	100	-40	NO	YES	NO	YES	YES	YES
LDPE	Low Density Polyethylene	100	-80	NO	YES	NO	YES	YES	YES
HDPE	High Density Polyethylene	120	-100	NO	YES	NO	YES	YES	YES
NYL	Polyamide (Nylon®)	90	0	NO	YES	NO	YES	YES	YES
PCTFE	Polychlorotrifluoroethylene (Kel-F®)	80	0	NO	YES	NO	YES	YES	YES
PC	Polycarbonate	135	0	YES	YES	NO	YES	YES	YES
PP	Polypropylene	135	0	YES	YES	NO	YES	NO	YES
PTFE	Polytetrafluoroethylene (Teflon®)	250	-267	YES	YES	YES	YES	YES	YES
PVC	Polyvinyl Chloride	70	-30	NO	YES	NO	YES	NO	YES
PVDF	Kynar (polyvinyldene fluoride)	110	-62	YES	YES	NO	YES	NO	YES
E-CTFE	Ethylene Chlortrifluoroethylene	150	-105	YES	YES	YES	YES	NO	YES
ETFE	EthyleneTetrafluoroethylene (Tefzel®)	150	-105	YES	YES	YES	YES	NO	YES
PFA	Perfluoroalkoxy (Teflon®)	260	-270	YES	YES	YES	YES	NO	YES
San	Styrene	95	-20	NO	YES	NO	YES	YES	YES
PMP	Polymethylpentene (TPX)	175	-70	YES	YES	NO	YES	YES	YES
PMMA	Polymethylmetyacrylate (PMMP)	50	0	NO	YES	NO	YES	YES	YES
PS	Polystyrene	90	-20	NO	YES	NO	YES	YES	YES
PEEK	Polyetheretherketone	125	0	YES	YES	NO	YES	YES	YES
TFE	Tetrafluoroethylene (Teflon®)	260	-267	YES	YES	YES	YES	YES	YES

A = NO EFFECT, EXCELLENT																		
B = MINOR EFFECT, GOOD	PLASTIC RESIN MATERIAL																	
C = MODERATE EFFECT, FAIR		-									Ŷ							
D = SEVERE EFFECT, NOT RECOMMENDED	s	etal	HE	щ	붠		_		H	¥	P (TP)		щ	0	МР		z	
SOLVENT	AB	Act	Щ	Ē	모	Ē	ž	2	BC	E	PM	đ	E	PV	PM	PS	SAI	E
Acetaldehyde	D	Α	Α	А	в	С	С	С	A	Α	С	С	Α	D	D	D	D	A
Acetic Anhydride	С	D	Α	Α	D	D	С	D	Α	Α	В	В	Α	D	D	D	D	A
Acetone	D	D	A	В	С	С	В	D	A	A	A	A	Α	D		D	D	A
Acid, Hydroflouric	С	D	Α	Α	Α	Α	D	D	Α	Α	Α	В	Α	В	D	D	С	A
Acid, Trifluoroacetic	D	С	С	С	С	D	D	D	Α	A	D	D	A	D	D	D	D	A
Acid, Acetic Dilute 50%	A	С	В	В	Α	Α	D	В	A	Α	Α	Α	Α	В	D	В	D	A
Acid, Hydrochloric 37%	С	D	A	A	A	A	D	D	Α	A	В	В	A	в	A	С	С	A
Acid, Nitric	В	D	A	Α	В	С	D	В	Α	Α	A	В	Α	В	С	С	С	A
Acid, Sulfuric	D	D	A	Α	A	В	D	С	A	Α	В	С	Α	В	D	С	D	A
Actonitrile	D	D	A	Α	A	Α	Α	D		Α	С	С	Α	D		D	С	A
Alcohol, Ethyl	A	D	A	Α	A	В	D	В	A	A	В	в	Α	В	В	В	С	A
Alcohol, Isobutyl	A	Α	A	Α	A	A	D	В	Α	A	A	A	Α	В	В	В		A
Alcohol, Methyl	D	В	A	A	A	A	D	В		A	A	A	Α	в	D	С	С	A
Alcohol, n-Buty	A	A	A	Α	A	A	D	С	A	A	В	A	A	A	В	В	В	A
Alcohol, Propyl	В	A	A	Α	A	A	D	D	A	Α		A	Α	A		A		A
Ammonium Hydroxide	В	A	A	A	A	A	С		A	A	В	В	A	В	С	В	D	A
Aniline	D	В	A	Α	В	В	В	В	A	Α	В	В	A	В	D	D	D	A
Aqua Regia	D	D	В	С	С	D	D	D	A	A	D	D	A	С		D		A
Benzaldehyde	В	Α	В	В	A	В	В	С	A		В	Α	Α	D		D	D	A
Benzene	D	A	В	В	D	D	A	D	В	A	В	В	D	A		D	D	A
Carbon Tetrachloride	D	В	A	A	С	В	A	D	A	A	D	В	A	В	D	D	D	A
Caustic Soda (NaOH)	В	В	A	Α	A	В	В	D	A	A	A	A	A	D	D	A	D	A
Chlorobenzene	D	D	В	В	С	D	В	D	A	A	С	D	A	D		D		A
Cloroform	D	В	В	В	С	С	D	D	В	A	D	В	A	С		D	D	A
Cyclohexane	A	A	В	В	С	С	A	D	A	A	D	С	A	D	D	D		A
Esters	D	D	A	A	В	в	A	D	В	A	В	В	A	С		D		A
Ether	D	A	В	В	С	D	A	С	В	A	D	D	A	D		D	D	A
Ether, Diethyl	D	D	В	В	D	A	С	D	С	A	D	D	A	D	С	D	D	A
Ether, Isopopyl	В	A	A	A	A	A	В	A	A	A	A	D	A	A	A	A	A	A
Ethtyl, Methyl	D	В	A	A	В	A	В	D	A	A	D	В	A	D	D	D	D	A
Hexane	D	B	A	A	В	D	A	C	A	A	C	B	A	C	C	D	A	A
Hydrazine	В	В	A	A		_		D	В	A	D	С	A	С	D	D		A
Hydrogen Peroxide	В	В	A	A	A	D	В	A	A	A	A	A	A	A	A	В	-	A
Methylene Chloride	D	В	A	A	C	D	A	D	A	D	С	C	A	D	C	D	D	A
Petroleum Ether	В	A	A	A	A	B	A	A		A	-	A	A	B	D	B	-	A
Phenol	D	C	A	A	D	D	D	D	A	A	D	D	A	C	D	C	D	A
Sodium Hydroxide	В	D	A	A	A	В	В	D	A	A	A	В	A	В	D	A	C	A
Tetrahydrofuran	D	A	A	A	В	C	A	D	A	D	C	B	A	D	D	D	D	A
Toluene	D	B	A	A	B	C	C	D	A	A	C	C	A	D	D	D	-	A
Trichloroethylene	D	B	В	B	C	D	B	D	A	A	D	D	A	D	D	D	D	A
Trimethylpentane,2,2,4	D	C	В	B	C	C	A	D	-	A	C	C	A	D	D	D	D	A
Water	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A
Xylene	D	A	A	A	С	D	A	D	A	A	С	С	A	D	D	D	D	A

Packaging with purpose.

ORP solutions

Making the Right Liner Choice: Liner Type

- Pressure Sensitive Foam
- Glue Bonded (glassine)
- Standard Reseal Liner
- Induction Seal
- Conduction Seal (Yogurt Lidding)

Making the Right Liner Choice: Backing Type

- Paper
- Board
- Pulp
- Foam
- Unsupported (Conduction only)

Making the Right Liner Choice

Liner Construction

- One piece
- Two piece
- Two piece barrier seal

Performance Characteristics

- Tamper Evident/Welded Seal
- Clean Peel
- Venting Solutions
- Easy Entry

Making the Right Liner Choice: Product Being Packaged

- Food
- Beverage
- Pharmaceutical
- Chemical
- Personal care

Making the Right Liner Choice: Characteristics of Product Being Packaged

- Dry
- Viscous
- Liquid
- High acid
- Aggressive ingredient

Making the Right Liner Choice: Product Filling Process

- Cold Fill
- Hot Fill
- Retort
- Pasteurization
- Aseptic
- Other

Making the Right Liner Choice: Consumer Convenience Tabs

- Lift 'n' Peel™ (One Piece)
- Tri-tabs
- Folded back tab (Pull Tab)
- Folded down tab
- Top-Tab™ (Two Piece)

Making the Right Liner Choice: Closure Style

- Continuous thread
- Dispensing
- Interrupted thread
- Snap
- CRC

Questions for your customer to help determine liner type

- What type of liner? (Standard gasket, pressure sensitive, heat seal)
- Plain or printed liner?
- What is the material of container?
- What is the product being packaged? Dry or liquid?
- Do you need a vented liner?
- Liner material preference, if any? (pulp, foam, chipboard)
- Application (automotive, pharma, nutra, etc.)
- Filling process?

Lining Material Cross Reference Guide

TRI	Induction Heat Seal Product Guide 1-Piece Structures																
Tri-Seal [®] Liner Code			Container	Seal	Heat Saul Structure					٧	et			hy	Mild	ggressive	Cross Reference
Flemington	Triadelphia	adelphia Alllance		Features	Heat Seal Structure		Foods - Wet	Food - Oil	Beverage	Pharma - Dr	Pharma - W	Cosmetics	Auto Fluids	Chemical - I	Chemicals -	Chemical - /	Selig FoilSeal®
	1				Paper Backed			_									
SPE/8	HSP-1/10	HS056	PE	WS, TE	1.0 mil Foil / 0.5 mil PET / 1.5 mil HeatSeal	1	*	1	*	×	1	1	4	×	~	*	.008" C1S FS M-1, SG 75M
SPEEE/8	HSP-1.0/10		PE DE DE	WS, TE	1.0 mil Foil / 1.5 mil HeatSeal	×	×	*	×	×	×	×	*	×	*	×	.008" C1S FS 1-7, SG 100
SPPEFE/8	HSP-2/10		PE PP	CP	1.0 mil Foil / 2.0 mil HeatSeal	×	*	×	*	1	*	~	~	·	*	*	008" C15 F5 1-13
SPPELA/8	HSP-2.1/10		PE, PP	CP	0.5 mil Foil / 0.5 mil PET / 2.0 mil HeatSeal	1	×	1	×	1	1	1	1	1	1	×	.008" C1S FS 1-18
SPPEEELA/8	HSP-2.2/10		PE, PP	CP	0.5 mil Foil / 2.0 mil HeatSeal	~	×	~	×	1	×	~	~	~	×	×	.008" C1S FS 1-16
SPET/8	HSP-3/10	HS906	PET, PVC	СР	1.0 mil Foil / 0.5 mil HeatSeal	1	×	1	×	1	1	1	1	1	1	×	.008" C1S FS 3-19, SG 90
SPETLA/8	HSP-3.1/10		PET, PVC	CP	0.5 mil Foil / 0.5 mil HeatSeal	1	×	1	×	1	1	1	1	1	1	×	.008" C15 FS 3-25
	HSP-4/10		PP	WS, TE	1.0 mil Foil / 0.5 mil PET / 1.5 mil HeatSeal	1	×	*	×	1	1	1	1	1	~	×	.008" C1S FS M-4
SPP/8	HSP-4.0/10		PP	WS, TE	1.0 mil Foil / 2.0 mil HeatSeal	×	×	×	*	×	×	×	~	V /	×	×	.008" C15 FS 4-6
	HSP-5.0/10	HEODE	Universal	WS, TE	1.0 mil Foll / 1.0 mil HeatSeal	×	×	*	*	×	*	×	*	×	×	*	
SUNI/8	H3F-3.0/10	13033	Universal	WS, TE	2.5 mil White Paper / 0.35 mil Foil / 1.0 mil HeatSeal	1	×	*	*	1	*	~	*	~	*	×	.008" C15 E5 5-8
SUNIPEEL/8			Universal	CP	1.0 Foil / 0.9 mil HeatSeal	1	×	1	×	1	V	1	×	1	×	×	.008" C15 FS 5-9
SUNIVENT/8			Universal	WS, TE, V	1.0 mil Foil / 2.5 mil White Paper / 1.0 mil HeatSeal	V	×	×	×	×	×	×	×	 	×	×	.008" C1S FS 5-4, FS 5-10
	HSP-5.0A/10		Universal	WS, TE, V	1.0 mil Foil / 2.5 mil White Paper / 1.0 mil HeatSeal	<	×	×	×	×	×	×	×	~	×	×	
	HSP-5.6A/10	HS02 VENT	Universal	WS, TE, V	0.35 mil Foil / 2.5 mil White Paper / 1.0 mil HeatSeal	×	*	*	*	1	*	*	*	1	*	×	1
					Polyolefin Foam Backed	_	_	_	_	_	_	_		_	_	_	
SPE/1	HSF-1/5		PE	WS, TE	1.0 mil Foil / 0.5 mil PET / 1.5 mil HeatSeal	1	1	1	1	1	1	~	1	1	~	×	S55/FS M-1, S70/FS M-1,
SPE/2	HSF-1/10		PE	WS, TE	1.0 mil Foil / 0.5 mil PET / 1.5 mil HeatSeal	1	1	1	1	1	1	~	1	1	~	×	\$105/FS M-1, ISPE U10
SPEEE/1	HSF-1.0/5		PE	WS, TE	1.0 mil Foil / 1.5 mil HeatSeal	×	~	1	1	×	×.	×	1	×	×	×	S55/FS 1-7, S70/FS 1-7
SPEEE/2	HSF-1.0/10		PE	WS, TE	1.0 mil Foil / 1.5 mil HeatSeal	1	1	1	1	1	1	1	1	1	*	*	S105/FS 1-7
SPPE/1	HSF-2/5		PE, PP	СР	1.0 Foil / 0.5 mil PET / 2.0 mil HeatSeal	~	~	*	*	*	*	*	*	1	~	×	S55/FS 1-15, S70/FS 1-15, ISPE/PP U5
SPPE/2	HSF-2/10		PE, PP	CP	1.0 Foil / 0.5 mil PET / 2.0 mil HeatSeal	1	1	1	1	1	1	1	1	1	1	×	S105/FS 1-15, ISPE/PP U10
SPPEEE/1	HSF-2.0/5		PE, PP	CP	1.0 Foil / 2.0 mil HeatSeal	×.	×	×	×.	×.	×	×	× .	V.	×	×	S55/FS 1-13, S70/FS 1-13
SPPEEE/2	HSF-2.0/10		PE, PP	CP	1.0 Foil / 2.0 mil HeatSeal	×	*	*	×	×.	*	×	*	× ·	*	*	\$105/FS 1-13
SPPELA/2	HSF-2.1/10		PE, PP	CP	0.5 Foil / 0.5 mil PET / 2.0 mil HeatSeal	V	~	~	1	~	~	V	~	V	~	*	555/F5 1-18, 570/F5 1-18
SPPEEELA/1	HSF-2.2/5		PE. PP	CP	0.5 Foil / 2.0 mil HeatSeal	1	1	1	1	1	1	1	1	1	×	×	\$55/F\$ 1-16, \$70/F\$ 1-16
SPPEEELA/2	HSF-2.2/10		PE, PP	СР	0.5 Foil / 2.0 mil HeatSeal	~	1	1	1	1	1	1	1	~	×	×	\$105/FS 1-16
SPET/1	HSF-3/5		PET, PVC	СР	1.0 mil Foil / 0.5 mil HeatSeal	1	*	1	~	1	*	*	~	1	*	*	S55/FS 3-19, S70/FS 3-19, ISCT U5
SPET/2	HSF-3/10		PET, PVC	CP	1.0 mil Foil / 0.5 mil HeatSeal	×	1	1	1	×	1	1	1	×	1	×	\$105/F\$ 3-19, ISCT U10
SPETLA/1	HSF-3.1/5		PET, PVC	CP	0.5 mil Foil / 0.5 mil HeatSeal	×	×	×	*	×	×	×	1	×	×	×	S55/FS 3-25, S70/FS 3-25
SPETLA/2	HSF-3.1/10		PET, PVC	CP	0.5 mil Foil / 0.5 mil HeatSeal	×	× /	*	*	*	*	*	*	×	*	×	\$105/F\$ 3-25
SPETWS/1			PET, PVC	WS, TE	1.0 mil Foil / 0.6 mil HeatSeal	V	V	V	~	×	×	v V	× ×	V	~	V	ISPET/PVC US
	HSF-4/5		PP	WS, TE	1.0 mil Foil / 0.5 mil PET / 1.5 mil HeatSeal	1	1	1	1	1	1	1	1	1	1	×	S55/FS M-4 or S70/FS M-4
	HSF-4/10		PP	WS, TE	1.0 mil Foil / 0.5 mil PET / 1.5 mil HeatSeal	~	~	~	~	1	~	~	~	~	~	×	\$105/FS M-4
SPP/1	HSF-4.0/5		PP	WS, TE	1.0 mil Foil / 1.5 mil HeatSeal	×	×	~	~	1	1	~	*	×	*	×	S55/FS 4-6 or S70/FS 4-6, ISPP U5
SPP/2	HSF-4.0/10		PP	WS, TE	1.0 mil Foil / 1.5 mil HeatSeal	1	1	*	1	1	1	1	*	1	*	×	S105/FS 4-6, ISPP U10
SUNI/1			Universal	WS, TE	2.5 mil White Paper / 0.35 mil Foil / 1.0 mil HeatSeal	×	×	×	×	×	×	×	×	×	×	×	\$55/FS 5-8 or \$70/FS 5-8
SUNI/2			Universal	WS, TE	2.5 mil White Paper / 0.35 mil Foil / 1.0 mil HeatSeal	× ·	*	~	*	×	*	*	*	*	*	*	\$105/F\$ 5-8
	HSE-5 0/10		Universal	WS, TE	1.0 mil Foil / 0.9 mil HeatSeal	V	*	*	*	V	*		*	*	*	*	
SUNIPEEL/1	H3F*3.0/10	-	Universal	CP.	1.0 mil Foil / 0.9 mil HeatSeal		~	1	~	1	~	1	-	- -	~	*	\$55/FS 5-9 or \$70/FS 5-9
SUNIPEEL/2			Universal	CP	1.0 mil Foil / 0.9 mil HeatSeal	~	~	~	1	1	~	1	1	~	~	×	S105/FS 5-9
SUNIVENT/1			Universal	WS, TE, V	1.0 mil Foil / 2.5 mil White Paper / 1.0 mil HeatSeal	~	×	1	×	1	*	×	*	*	*	×	S55/FS 5-4 or S70/FS 5-4 or S55/FS 5-10 or S70/FS 5-10
SUNIVENT/2			Universal	WS, TE, V	1.0 mil Foil / 2.5 mil White Paper / 1.0 mil HeatSeal	1	*	1	*	1	*	*	*	*	*	*	S105/FS 5-10 or S105/FS 5-10
SUNI/20E	1		Universal	WE TE	Polystyrene Foam Backed			1		1							
30141/20F	H\$\$-5.6/20	H\$035	Universal	WS, TF	2.5 mil White Paper / 0.35 mil Foil / 1.0 mil HeatSeal	-	*	~	*	-	*	*	*	*	*	*	HS-035
SUNIPEEL/20F			Universal	CP	1.0 mil Foil / 0.9 mil HeatSeal	1	×	1	×	1	×	×	×	×	×	×	.020" PS Foam/FS 5-9
	HSS-5.6A/20	HS02 VENT	Universal	WS, TE, V	0.35 mil Foil / 2.5 mil White Paper / 1.0 mil HeatSeal	1	×	1	×	1	×	×	×	×	×	×	
(CP = Clean Peel (no res	idue), EE = Easy Entr	y, TE = Tampe	r Evident, V =	Venting, WS = Weld Seal; Universal = various plastic	bottle	e mat	erials	and g	lass,	= R	ecom	mend	led, ×	= No	Rec	mmended
		The customer is res	ponsible to tes	and determ	ine the fit to use. Above cross references are based o	n the	liner	struc	tural	and fu	nctio	nal si	milari	ties.			
		Info	ormation provi	ided as a guid	le; consult your Tri-Seal / Tech-Seal representative to d	iscus	s you	spec	ific ap	plica	tion.						

Andrew Barrowcliff (East) (248) 660-6469 (t) (215) 499-2688 (m) Joseph Farrell (Videwst) 973-752-255 (t) 908-285-7583 (m) Andy Jacobs (West) 916-774-2856 (t) 916-759-7010 (m) Rick McKenna 732-325-7019 (m) Paul Youdi (Midwest) 630-259-7147 (m) For contract at there physical locations, or for more information, please also e-mail us at: <u>http://triseal.texin.pleas.com/</u>

Lining Material Cross Reference Guide

2-Piece Structures																	
Tri-Seal [™] Liner Code			Container	Seal										v.	Aild	ggressive	Cross Reference
Flemington	Triadelphia Alliance		Material	Features	Heat Seal Structure		Foods - Wet	Food - Oil	Beverage	Pharma - Dry	Pharma - We	Cosmetics	Auto Fluids	Chemical - D	Chemicals - h	Chemical - A	Selig FoilSeal®
					Backing: Pulp, Wax-bonded					_		_	_	_			
HS130	HSL-1	HS056	PE	WS, TE	1.0 mil Foil / 0.5 mil PET / 1.5 mil HeatSeal	1	*	1	×	1	1	1	1	1	1	×	FS M-1, SG 75M
HS123	HSL-1.0		PE	WS, TE, EE	1.0 mil Foil / 1.5 mil HeatSeal	×	×	~	*	×	×	~	~	× .	×	×	FS 1-7, SG 100
HS135	HSL-2		PE, PP	CP	1.0 Foil / 0.5 mil PET / 2.0 mil HeatSeal	×	×	~	×	×	1	*	1	×	1	×	FS 1-15
HS125	HSL-2.0		PE, PP	CP, EE	1.0 mil Foil / 2.0 mil HeatSeal	×	*	*	*	×.	*	×	*	×	*	×	FS 1-13
HS134	HSL-2.1	HEDDE	PE, PP	CP CP	0.5 mil Foil / 0.5 mil PET / 2.0 mil HeatSeal	×	×	, v	*	×	~	4	~	×.	×	×	FS 1-18
H5124	HSL-Z.Z	H2906	PE, PP	CP, EE	0.5 mil Foll / 2.0 mil HeatSeal	~	*	-	*	×	*	1	*	×	*	*	FS 1-16
H\$164	HSL-3 1		PET, PVC	CP	0.5 mil Foil / 0.5 mil HeatSeal	-	-		-		~	-	1			-	FS 3-15, 30 50
H\$8501	156-5.2		PET PVC	WS TE	1.0 mil Foil / 0.5 mil HeatSeal	v.	*	1	*		~	1	1		1	~	FS 3-31
	HSL-4		PP	WS. TE	1.0 mil Foil / 0.5 mil PET / 1.5 mil HeatSeal	1	×	1	×	1	1	1	1	1	1	×	FS M-4
HS128	HSL-4.0		PP	WS, TE	1.0 mil Foil / .002" HeatSeal	~	×	×	×	~	×	~	×	1	×	×	FS 4-6, SG 101
H\$205			Universal	WS, TE	2.5 mil White Paper / 0.35 mil Foil / 1.0 mil HeatSeal	1	×	×	×	1	×	1	×	×	×	×	FS 5-8
	HSL-5.6	HS035	Universal	WS, TE	2.5 mil White Paper / 0.35 mil Foil / 1.0 mil HeatSeal	×	×	×	*	×.	×	1	*	×	×	×	
HS225			Universal	СР	1.0 Foil / 0.9 mil HeatSeal	1	×	×	×	1	×	1	×	×	×	×	FS 5-9
HS245			Universal	WS, TE, V	1.0 mil Foil / 2.5 mil White Paper / 1.0 mil HeatSeal	1	×	×	×	1	×	1	×	1	×	×	FS 5-4, FS 5-10
	HSL-5.0A	HS 02 Vent	Universal	WS, TE, V	1.0 mil Foil / 2.5 mil White Paper / 1.0 mil HeatSeal	1	×	×	*	1	×	1	×	1	×	×	
					Backing: PP foam-Polyester, Wax-bonded		-				-				-		
Tri-Gard II-TSPEEE			PE	WS, TE	1.0 mil Foil / 1.5 mil Heat Seal	×	*	*	*	×	*	~	*	×	*	×	C25 LE FS 1-7
Tri-Gard II-TSPE			PE PET PVC	CP	1.0 mil Foil / 0.5 mil HeatSeal	~	*	1	*	~	1	~	1	~	-	×	C25 LE F5 M-1
Tri-Gard II-TSPETLA			PET, PVC	Ci .	0.5 mil Foil / 0.5 mil HeatSeal	1	×	~	×	~	1	~	1	4	4	×	C25 LE FS 3-25
Tri-Gard II-TSPETWS		2	PET	WS, TE	1.0 mil Foil / 0.6 mil HeatSeal	1	×	1	×	1	1	1	1	1	1	1	C25 LE FS 3-31
Tri-Gard II-TSPP			PP	WS, TE	1.0 mil Foil / 1.5 mil HeatSeal	×.	*	*	*	1	*	1	*	1	*	*	C25 LE FS 4-6
Tri-Gard II-TSPPE			PE, PP	СР	1.0 mil Foil / 0.5 mil PET / 2.0 mil HeatSeal	×	×	1	×	1	~	1	~	1	1	×	C25 LE FS 1-15
Tri-Gard II-TSPPEEE			PE, PP	CP	1.0 mil Foil / 2.0 mil HeatSeal	×	*	×	*	Ý	×	×	*	×.	×	×	C25 LE FS 1-13
Tri-Gard II-			Universal	CP	2.5 mil white Paper / 0.35 mil Foil / 1.0 mil HeatSeal	v V	*		*	V	*	~	*	V	*	*	C25 LE F5 5-8
Tri-Gard II-			Universal	WS, TE, V	1.0 mil Foil / 2.5 mil White Paper / 1.0 mil HeatSeal	1	×	*	*	1	×	1	*	1	×	×	C25P FS 5-4, C25P FS 5-10
1				1	Backing: Foam-paper, Wax-bonded												
Tri-Gard III-TSPEEE			PE	WS, TE, EE	1.0 mil Foil / 1.5 mil HeatSeal	1	×	×	*	× .	×	1	×	1	×	×	C25P FS 1-7
Tri-Gard III-TSPE			PE	WS, TE	1.0 mil Foil / 0.5 mil PET / 1.5 mil HeatSeal	1	*	×	×	×	1	1	1	× .	1	×	C25P FS M-1
Tri-Gard III-TSPET			PET, PVC	CP	1.0 mil Foil / 0.5 mil HeatSeal	×	*	× /	*	Ý	×	× - (× 1	¥	×	×	C25P FS 3-19
Tri-Gard III-			PET, PVC	WS TE	1.0 mil Foil / 0.6 mil HeatSeal	·	*	1	*	·	V	~	~	·	· ·	~	C25P F5 3-31
Tri-Gard III-TSPPE			PE, PP	CP	1.0 mil Foil / 0.5 mil PET / 2.0 mil HeatSeal	1	×	1	×	~	~	1	1	~	1	×	C25P FS 1-15
Tri-Gard III-TSUNI			Universal	WS, TE	2.5 mil White Paper / 0.35 mil Foil / 1.0 mil HeatSeal	1	*	*	*	1	*	1	*	1	*	×	C25P FS 5-8
Tri-Gard III-			Universal	СР	1.0 mil Foil / 0.9 mil HeatSeal	1	×	×	.*	1	×	1	*	1	×	×	C25P FS 5-9
Tri-Gard III-			Universal	WS, TE, V	1.0 mil Foil / 2.5 mil White Paper / 1.0 mil HeatSeal	1	×	*	×	1	×	1	×	1	*	×	C25P FS 5-4, C25P FS 5-10
Tri-Gard IV-TSPEEF			DE	WS TE FE	1.0 mil Foil / 1.5 mil HeatSeal	1	1	1	1	v	1	1	×	V	×	×	
Tri-Gard IV-TSPE			PE	WS, TE	1.0 mil Foil / 0.5 mil PET / 1.5 mil HeatSeal	~	~	~	1	~	~	~	1	×	1	×	1
Tri-Gard IV-TSPET			PET, PVC	CP	1.0 mil Foil / 0.5 mil HeatSeal	~	~	1	~	1	~	1	~	1	1	×	
Tri-Gard IV-TSPETLA			PET, PVC	СР	1.0 mil Foil / 0.5 mil HeatSeal	×.	×	1	1	×	×	1	1	×.	1	×	
Tri-Gard IV-			PET	WS, TE	1.0 mil Foil / 0.6 mil HeatSeal	1	1	1	1	1	1	1	1	1	1	1	
Tri-Gard IV-TSPP			PP pr pp	WS, TE	1.0 mil Foil / 1.5 mil HeatSeal	×	×	× ·	4	Ý	×	×	*	×.	*	*	
Tri-Gard IV-TSPPE			PE, PP	CP. FF	1.0 mil Foil / 0.5 mil PET / 2.0 mil HeatSeal	~	~	×	~	v V	~	~	*	×	×	*	
Tri-Gard IV-			Universal	CP	1.0 mil Foil / 0.9 mil HeatSeal	~	~	~	1	~	~	~	×	1	×	×	
Tri-Gard IV-			Universal	WS, TE, V	1.0 mil Foil / 2.5 mil White Paper / 1.0 mil HeatSeal	1	1	1	1	1	1	1	*	1	*	×	
					Backing: Pulp-PVDC coated Polyester, Wax-bonded					_			_				
	LSM//HSP-1.0	-	PE	WS, TE	1.0 mil Foil / 1.5 mil HeatSeal	×	×	×	*	×	×	×	~	×	×	×	E FS 1-7
	LSM//HSP-1		PE PVC	VVS, IE	1.0 mil Foil / 0.5 mil PET / 1.5 mil HeatSeal	V	*	Ý	*	Ý	× v	×	×	Ý	Ý	*	E F5 M-1 F F5 3,10
	LSM//HSP-4		PP	WS, TE	1.0 mil Foil / 0.5 mil PET / 1.5 mil HeatSeal	~	*	1	*	~	1	1	1	1	1	*	E FS M-4
Backing PP foam-Polyeter, Adhesive-bod																	
Tri-Gard SPE			PE	WS, TE	1.0 mil Foil / 1.5 mil HeatSeal	1	×	1	×	1	1	1	1	1	1	×	
Tri-Gard SPET			PET, PVC	CP	1.0 mil Foil / 0.5 mil HeatSeal	1	×	1	*	1	1	1	1	1	1	×	
CP	= Clean Peel (no resi	due), EE = Easy Entry	, TE = Tampe	r Evident, V =	Venting, WS = Weld Seal; Universal = various plastic	bottle	mat	erials	and g	lass,	= R	ecom	mend	led, ×	= No	t Reco	ommended
	,	The customer is resp	onsible to tes	t and determ	ine the fit to use. Above cross references are based o	n the	liner	struct	urals	and fu	nctio	nal si	milari	ties			
		Info	mation provi	ded as a guid	e; consult your Tri-Seal / Tech-Seal representative to d	Iscuss	you	spec	itic ap	plica	tion.						

Andrew Barrowcliff (East) [248] 660-6469 (t) [215] 499-2688 (m) Joseph Farrell (Midwest) 975-752-256 (t) 906-285-7583 (m) Andy Jacobs (West) 916-774-2856 (t) 916-759-7010 (m) Rick McKenna 732-325-7019(m) Paul Yousif (Midwest) 937-525-7147 (m) For contract at thetry Epideal locations, or for more information, plesea also e-mail us at: <u>http://tri-seat.tekni-plex.com/</u>

Packaging with purpose.

Induction Heat Seal Product Guide

For Reference

To download a copy visit:

<u>www.seligsealing.com/</u> <u>pht.html</u>

Education links

- <u>Selig Group | Induction Sealing eLearning (seligsealing.com)</u>
- Induction Sealing & Sealers: Induction Cap Sealing Enercon Industries

Injection Molding – An Introduction

- •Plastic materials
- Molding process
- Runner systems
- Mold designs and actions

Types of Plastics

Injection Molding Process

Injection Molding Machine

Clamp Unit

Injection Unit

Toggle Clamp

Opens and Closes the Mold Keeps the Mold Closed Toggle Clamp is like a vise grip Toggle Clamp - most of the force is on the corners Hydraulic Clamp - concentration is on the center portion of the mold (large hydraulic cylinder, not shown)

Injection Unit

Conveys and melts the plastic material Forces the material into the mold Pressurizes the plastic in the mold after filling and maintains the pressure until sufficient strength to eject

Molding Tool

Molding surfaces (cavities & cores)

Distribution system (sprues & runners)

Heat exchanger (water lines)

Ejection system

Cold Runner System

Two-Plate, Cold Runner Injection Mold

Two-Plate, Cold Runner Injection Mold

Manifold to Deliver Plastic to Mold

Hot Runner Injection Mold, With Stripper Plate

Heating System

Freeze Gate

Hot Runner Gating

Hot Tip Gate

Material "freezes" to "close" the gate

Hot Valve Gate

Mechanically closes the gate

Unscrewing Mold Rack & Pinion Unscrewing

Collapsing Core

Expandable Cavity

Cam Action

Packaging with purpose.

58

Thank You

